4.7 Article

Dynamics in a memristive neuron under an electromagnetic field

期刊

NONLINEAR DYNAMICS
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11071-023-08969-8

关键词

Neural circuit; Biophysical neuron; Hamilton energy; Helmholtz's theorem

向作者/读者索取更多资源

The propagation and exchange of electrical signals between neurons rely on the controllability of synapses. Introducing memristors allows for the evaluation of the energy effect from the physical field on neurons. By constructing a memristive neural circuit, we can perceive and modulate external electric and magnetic fields. The results of the experiment show that this neural circuit is self-adaptive and coherent resonance may occur in the presence of an electromagnetic field.
Propagation and exchange of electrical signals between neurons mainly depend on the controllability of synapses. These electrical signals will affect the dynamic characteristics of ion channels on the neuron membrane and the firing activity of neurons can be changes. Polarization and magnetization of media exposed to electromagnetic field encode energy distribution and the neural activities will be changed greatly. The incorporation of memristors is effective to estimate the energy effect from the physical field on neurons. In this work, a charge-controlled memristor (CCM) and a magnetic flux-controlled memristor (MFCF) are connected in parallel to a FitzHugh-Nagumo (FHN) neural circuit for building a new neural circuit, which can perceive modulation from external electric and magnetic fields. Furthermore, the dynamical equation of the memristive neural circuit and the field energy of electrical elements are obtained based on Kirchhoff's law and Helmholtz's theorem. The firing patterns of the memristive neuron and energy proportion can be controlled when the external electric and magnetic fields are adjusted. Continuous energy injection into the memristive channels enables memristive synapses to become self-adaptive under energy flow. Noisy disturbance and radiation are applied to discern the occurrence of coherent resonance in this memristive neuron. The results can be used to explore the collective behaviors and creation of heterogeneity in networks in the presence of an electromagnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据