4.6 Article

Covariation between oxygen and hydrogen stable isotopes declines along the path from xylem water to wood cellulose across an aridity gradient

期刊

NEW PHYTOLOGIST
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1111/nph.19248

关键词

aridity; Australia; cellulose; hydrogen isotopes; isotope tree-ring; oxygen isotopes; paleo-environmental reconstruction

向作者/读者索取更多资源

Oxygen and hydrogen isotopes of cellulose in plant biology can be used to understand environmental conditions, but their covariation is not well understood. This study compared plant water, leaf cellulose, and branch cellulose across an aridity gradient in Northern Australia. The researchers found a decline in covariation from xylem to leaf water, and from leaf to branch wood cellulose. The results suggest that postphotosynthetic isotope exchange with water is more apparent for oxygen isotopes, while variable kinetic and nonequilibrium isotope effects complicate the interpretation of metabolic-induced d(2)H patterns.
Oxygen and hydrogen isotopes of cellulose in plant biology are commonly used to infer environmental conditions, often from time series measurements of tree rings. However, the covariation (or the lack thereof) between d(18)O and d(2)H in plant cellulose is still poorly understood. We compared plant water, and leaf and branch cellulose from dominant tree species across an aridity gradient in Northern Australia, to examine how d(18)O and d(2)H relate to each other and to mean annual precipitation (MAP). We identified a decline in covariation from xylem to leaf water, and onwards from leaf to branch wood cellulose. Covariation in leaf water isotopic enrichment (?) was partially preserved in leaf cellulose but not branch wood cellulose. Furthermore, whilst d(2)H was well-correlated between leaf and branch, there was an offset in d(18)O between organs that increased with decreasing MAP. Our findings strongly suggest that postphotosynthetic isotope exchange with water is more apparent for oxygen isotopes, whereas variable kinetic and nonequilibrium isotope effects add complexity to interpreting metabolic-induced d(2)H patterns. Varying oxygen isotope exchange in wood and leaf cellulose must be accounted for when d(18)O is used to reconstruct climatic scenarios. Conversely, comparing d(2)H and d(18)O patterns may reveal environmentally induced shifts in metabolism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据