4.4 Article

Morphological, physiological and carbon balance response of Eucalyptus genotypes under water stress

期刊

NEW FORESTS
卷 -, 期 -, 页码 -

出版社

SPRINGER
DOI: 10.1007/s11056-023-09985-7

关键词

Productivity; Early selection; Tree physiology; Carbon balance; Climate change

类别

向作者/读者索取更多资源

Water stress is a significant factor limiting the survival and productivity of Eucalyptus plantations. Our study analyzed the responses of ten Eucalyptus genotypes to different water regimes under nursery conditions. The results showed that water stress reduced growth and physiological activity in all genotypes, and intrinsic water use efficiency and predawn water potential were important variables in grouping the genotypes. Some genotypes were considered tolerant, while others were moderately tolerant or highly sensitive. The findings suggest that evaluating the physiological traits of genotypes in nurseries can help select suitable sites and reduce losses under drier climate conditions.
Water stress is considered one of the main environmental factors that limit survival and productivity of Eucalyptus plantations. Identifying genotypes traits that provide evidence of tolerance to water stress may allow sustained productivity and secure better resilience of forest plantations under climate change in Mediterranean environments. Our study analyzed morphological, physiological, and carbon (C) balance responses of ten Eucalyptus genotypes under contrasting water regimes under nursery conditions. One-year-old cuttings of Eucalyptus nitens (En1 and En2), E. smithii (Es), E. badjensis (Eb), E. nitens x globulus (Eng1, Eng2, Eng3, and Eng4), E. globulus (Eg), and E. camaldulensis x globulus (Ecg) were evaluated under progressive drought from well-watered (soil water potential close to 0 MPa) to severe water stress (soil water potential close to - 2.5 MPa) conditions. Absolute growth rate (root collar diameter, height, shoot: root biomass ratio), net photosynthesis, stomatal conductance, transpiration, intrinsic water use efficiency (iWUE), predawn water potential (Psi(pd)) and C balance (flux and partitioning) were evaluated. As expected, water stress significantly reduced growth and physiological activity for all genotypes. Of all evaluated parameters iWUE and Psi(pd) were the key grouping physiological and growth response variables among genotypes. Genotypes En1, Eng3, and Eng4 were considered tolerant genotypes, with the smallest physiological change and larger morphological growth. Genotypes En2, Es, Eng1 and Eng2 were moderately tolerant showing intermediate responses compared to other groups. In contrast, Eg, Eb, and Ecg were considered highly sensitive, with major changes in morphology and physiological variables over time. Our results suggest that nursery stage physiological evaluation of genotypes may allow selection for sites with water resource availability risks and may allow to reduce mortality and early establishment productivity losses under drier climate change scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据