4.6 Article

Personalized robotic control via constrained multi-objective reinforcement learning

期刊

NEUROCOMPUTING
卷 565, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.neucom.2023.126986

关键词

Reinforcement learning; Multi-objective optimization; Personalized control; Robotic control; End-to-end control

向作者/读者索取更多资源

In this paper, a novel constrained multi-objective reinforcement learning algorithm is proposed for personalized end-to-end robotic control with continuous actions. The approach trains a single model using constraint design and a comprehensive index to achieve optimal policies based on user-specified preferences.
Reinforcement learning is capable of providing state-of-art performance in end-to-end robotic control tasks. Nevertheless, many real-world control tasks necessitate the balancing of multiple conflicting objectives while simultaneously ensuring that the learned policies adhere to constraints. Additionally, individual users may typically prefer to explore the personalized and diversified robotic control modes via specific preferences. Therefore, this paper presents a novel constrained multi-objective reinforcement learning algorithm for personalized end-to-end robotic control with continuous actions, allowing a trained single model to approximate the Pareto optimal policies for any user-specified preferences. The proposed approach is formulated as a constrained multi-objective Markov decision process, incorporating a nonlinear constraint design to facilitate the agent in learning optimal policies that align with specified user preferences across the entire preference space. Meanwhile, a comprehensive index based on hypervolume and entropy is presented to measure the convergence, diversity and evenness of the learned control policies. The proposed scheme is evaluated on nine multi-objective end-to-end robotic control tasks with continuous action space, and its effectiveness is demonstrated in comparison with the competitive baselines, including classical and state-of-the-art algorithms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据