4.5 Article

Structure and activation of the RING E3 ubiquitin ligase TRIM72 on the membrane

期刊

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41594-023-01111-7

关键词

-

向作者/读者索取更多资源

By studying TRIM72 protein, we have revealed the importance of its interaction with phosphatidylserine-enriched membranes for its function. We have also proposed a molecular model of TRIM72, providing further insights into its role in cell membrane repair and ubiquitination.
Defects in plasma membrane repair can lead to muscle and heart diseases in humans. Tripartite motif-containing protein (TRIM)72 (mitsugumin 53; MG53) has been determined to rapidly nucleate vesicles at the site of membrane damage, but the underlying molecular mechanisms remain poorly understood. Here we present the structure of Mus musculus TRIM72, a complete model of a TRIM E3 ubiquitin ligase. We demonstrated that the interaction between TRIM72 and phosphatidylserine-enriched membranes is necessary for its oligomeric assembly and ubiquitination activity. Using cryogenic electron tomography and subtomogram averaging, we elucidated a higher-order model of TRIM72 assembly on the phospholipid bilayer. Combining structural and biochemical techniques, we developed a working molecular model of TRIM72, providing insights into the regulation of RING-type E3 ligases through the cooperation of multiple domains in higher-order assemblies. Our findings establish a fundamental basis for the study of TRIM E3 ligases and have therapeutic implications for diseases associated with membrane repair. The authors present the full-length dimeric TRIM72 E3 ubiquitin ligase and the architecture of its high-order assembly bound to a phosphatidylserine-enriched membrane, providing insights into its role in membrane repair and ubiquitylation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据