4.6 Article

Duloxetine Reduces Oxidative Stress, Apoptosis, and Ca2+ Entry Through Modulation of TRPM2 and TRPV1 Channels in the Hippocampus and Dorsal Root Ganglion of Rats

期刊

MOLECULAR NEUROBIOLOGY
卷 54, 期 6, 页码 4683-4695

出版社

HUMANA PRESS INC
DOI: 10.1007/s12035-016-9992-1

关键词

Apoptosis; Duloxetine; Oxidative stress; Pain; TRPV1

向作者/读者索取更多资源

Overload of Ca2+ entry and excessive oxidative stress in neurons are the two main causes of depression. Activation of transient receptor potential (TRP) vanilloid type 1 (TRPV1) and TRP melastatin 2 (TRPM2) during oxidative stress has been linked to neuronal survival. Duloxetine (DULOX) in neurons reduced the effects of Ca2+ entry and reactive oxygen species (ROS) through glutamate receptors, and this reduction of effects may also occur through TRPM2 and TRPV1 channels. In order to better characterize the actions of DULOX in peripheral pain and hippocampal oxidative injury through modulation of TRPM2 and TRPV1, we tested the effects of DULOX on apoptosis and oxidative stress in the hippocampal and dorsal root ganglion (DRG) neurons of rats. Freshly isolated hippocampal and DRG neurons were incubated for 24 h with DULOX. In whole-cell patch-clamp and intracellular-free calcium ([Ca2+]) concentration (Fura-2) experiments, cumene hydroperoxide and ADP-ribose-induced TRPM2 currents in the neurons were inhibited by N-(p-amylcinnamoyl) anthranilic acid (ACA) and capsaicin-induced TRPV1 currents were inhibited by capsazepine (CPZ) incubations. TRPM2 and TRPV1 channel current densities, [Ca2+] concentration, apoptosis, caspase 3, caspase 9, mitochondrial depolarization, and intracellular ROS production values in the neurons were lower in the DULOX group than in controls. In addition, the above values were further decreased by DULOX + CPZ and DULOX + ACA treatments. In conclusion, TRPM2 and TRPV1 channels are involved in Ca2+ entry-induced neuronal death and modulation of the activity of these channels by DULOX treatment may account for their neuroprotective activity against apoptosis, excessive ROS production, and Ca2+ entry.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据