4.8 Article

Optically heralded microwave photon addition

期刊

NATURE PHYSICS
卷 -, 期 -, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41567-023-02129-w

关键词

-

向作者/读者索取更多资源

To distribute quantum information over long distances, researchers have developed a transducer that can generate correlated optical and microwave photons. Although improvements are needed, this study provides possibilities for long-distance quantum communication.
Photons with optical frequencies of a few hundred terahertz are perhaps the only way to distribute quantum information over long distances. Superconducting qubits, which are one of the most promising approaches for realizing large-scale quantum machines, operate on microwave photons at frequencies that are similar to 40,000 times lower. To network these quantum machines across appreciable distances, we must bridge this frequency gap. Here we implement and demonstrate a transducer that can generate correlated optical and microwave photons. We use it to show that by detecting an optical photon we generate an added microwave photon with an efficiency of similar to 35%. Our device uses a gigahertz nanomechanical resonance as an intermediary, which efficiently couples to optical and microwave channels through strong optomechanical and piezoelectric interactions. We show continuous operation of the transducer with 5% frequency conversion efficiency, input-referred added noise of similar to 100, and pulsed microwave photon generation at a heralding rate of 15 Hz. Optical absorption in the device generates thermal noise of less than two microwave photons. Improvements of the system efficiencies and device performance are necessary to realize a high rate of entanglement generation between distant microwave-frequency quantum nodes, but these enhancements are within reach. Many quantum devices operate in the microwave regime, but long-distance communication relies on optical photons. A nanomechanical resonator can be used to create entangled optical and microwave photons linking the two frequency regimes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据