4.8 Article

Single-molecule mid-infrared spectroscopy and detection through vibrationally assisted luminescence

期刊

NATURE PHOTONICS
卷 17, 期 10, 页码 865-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41566-023-01263-4

关键词

-

向作者/读者索取更多资源

This study proposes a method for detecting molecular vibrations in the mid-infrared range at room temperature. By assembling molecules into a plasmonic nanocavity resonant at both mid-infrared and visible wavelengths, and optically pumping them below the electronic absorption band, successful conversion of mid-infrared light and observation of enhanced visible luminescence were achieved.
Room-temperature detection of molecular vibrations in the mid-infrared (MIR, lambda = 3-30 mu m) has numerous applications, including real-time gas sensing, medical imaging and quantum communication. However, existing technologies rely on cooled semiconductor detectors because of thermal noise limitations. One way to overcome this challenge is to upconvert the low-energy MIR photons into high-energy visible wavelengths (lambda = 500-800 nm) where detection of single photons is easily achieved using silicon technologies. This process suffers from weak cross-sections and the MIR-to-visible wavelength mismatch, limiting its efficiency. Here we exploit molecular emitters possessing both MIR and visible transitions from molecular vibrations and electronic states, coupled through Franck-Condon factors. By assembling molecules into a plasmonic nanocavity resonant at both MIR and visible wavelengths, and optically pumping them below the electronic absorption band, we show transduction of MIR light. The upconverted signal is observed as enhanced visible luminescence. Combining Purcell-enhanced visible luminescence with enhanced rates of vibrational pumping gives transduction efficiencies of >10%. MIR frequency-dependent upconversion gives the vibrational signatures of molecules assembled in the nanocavity. Transient picocavity formation further confines MIR light down to the single-molecule level. This allows us to demonstrate single-molecule MIR detection and spectroscopy that is inaccessible to any previous detector.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据