4.8 Article

Efficient solvent- and hydrogen-free upcycling of high-density polyethylene into separable cyclic hydrocarbons

期刊

NATURE NANOTECHNOLOGY
卷 18, 期 7, 页码 772-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41565-023-01429-9

关键词

-

向作者/读者索取更多资源

Ru nanoparticles on HZSM-5 catalyze solvent- and hydrogen-free upcycling of high-density polyethylene into separable linear (C-1 to C-6) and cyclic (C-7 to C-15) hydrocarbons. Plastic pollution, worsened by the COVID-19 pandemic, requires a sustainable and economically viable recycling method that avoids consumable materials. This study demonstrates the catalytic conversion of high-density polyethylene using Ru nanoparticles on HZSM-5, resulting in a separable distribution of linear and cyclic hydrocarbons.
Ru nanoparticles on HZSM-5 catalysed solvent- and hydrogen-free upcycling of high-density polyethylene into a separable distribution of linear (C-1 to C-6) and cyclic (C-7 to C-15) hydrocarbons. Plastic pollution is a planetary threat that has been exacerbated by the COVID-19 pandemic due to the surge in medical waste, personal protective equipment and takeaway packaging. A socially sustainable and economically viable method for plastic recycling should not use consumable materials such as co-reactants or solvents. Here we report that Ru nanoparticles on zeolitic HZSM-5 catalyse the solvent- and hydrogen-free upcycling of high-density polyethylene into a separable distribution of linear (C-1 to C-6) and cyclic (C-7 to C-15) hydrocarbons. The valuable monocyclic hydrocarbons accounted for 60.3 mol% of the total yield. Based on mechanistic studies, the dehydrogenation of polymer chains to form C=C bonds occurs on both Ru sites and acid sites in HZSM-5, whereas carbenium ions are generated on the acid sites via the protonation of the C=C bonds. Accordingly, optimizing the Ru and acid sites promoted the cyclization process, which requires the simultaneous existence of a C=C bond and a carbenium ion on a molecular chain at an appropriate distance, providing high activity and cyclic hydrocarbon selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据