4.8 Article

Large-scale benchmarking of circRNA detection tools reveals large differences in sensitivity but not in precision

期刊

NATURE METHODS
卷 20, 期 8, 页码 1159-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41592-023-01944-6

关键词

-

向作者/读者索取更多资源

This study evaluates and validates computational tools for detecting circRNAs, finding most tools to be highly precise with variations in sensitivity and total detection.
The detection of circular RNA molecules (circRNAs) is typically based on short-read RNA sequencing data processed using computational tools. Numerous such tools have been developed, but a systematic comparison with orthogonal validation is missing. Here, we set up a circRNA detection tool benchmarking study, in which 16 tools detected more than 315,000 unique circRNAs in three deeply sequenced human cell types. Next, 1,516 predicted circRNAs were validated using three orthogonal methods. Generally, tool-specific precision is high and similar (median of 98.8%, 96.3% and 95.5% for qPCR, RNase R and amplicon sequencing, respectively) whereas the sensitivity and number of predicted circRNAs (ranging from 1,372 to 58,032) are the most significant differentiators. Of note, precision values are lower when evaluating low-abundance circRNAs. We also show that the tools can be used complementarily to increase detection sensitivity. Finally, we offer recommendations for future circRNA detection and validation. This study describes benchmarking and validation of computational tools for detecting circRNAs, finding most to be highly precise with variations in sensitivity and total detection. The study also finds over 315,000 putative human circRNAs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据