4.8 Article

Iron drives anabolic metabolism through active histone demethylation and mTORC1

期刊

NATURE CELL BIOLOGY
卷 25, 期 10, 页码 1478-+

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41556-023-01225-6

关键词

-

向作者/读者索取更多资源

The study reveals a previously undescribed iron sensing pathway in eukaryotic cells, in which the iron-binding histone demethylase KDM3B acts as an intrinsic iron sensor to regulate mTORC1 activity and maintain the expression of critical components of the pathway.
All eukaryotic cells require a minimal iron threshold to sustain anabolic metabolism. However, the mechanisms by which cells sense iron to regulate anabolic processes are unclear. Here we report a previously undescribed eukaryotic pathway for iron sensing in which molecular iron is required to sustain active histone demethylation and maintain the expression of critical components of the pro-anabolic mTORC1 pathway. Specifically, we identify the iron-binding histone-demethylase KDM3B as an intrinsic iron sensor that regulates mTORC1 activity by demethylating H3K9me2 at enhancers of a high-affinity leucine transporter, LAT3, and RPTOR. By directly suppressing leucine availability and RAPTOR levels, iron deficiency supersedes other nutrient inputs into mTORC1. This process occurs in vivo and is not an indirect effect by canonical iron-utilizing pathways. Because ancestral eukaryotes share homologues of KDMs and mTORC1 core components, this pathway probably pre-dated the emergence of the other kingdom-specific nutrient sensors for mTORC1. Shapiro, Chang, et al. identify a conserved role for the iron-binding histone demethylase KDM3B in sensing iron levels and regulating mTORC1 through transcriptional repression of key mTORC1 pathway components.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据