4.6 Article

Light-Emitting Diode Phototherapy Reduces Nocifensive Behavior Induced by Thermal and Chemical Noxious Stimuli in Mice: Evidence for the Involvement of Capsaicin-Sensitive Central Afferent Fibers

期刊

MOLECULAR NEUROBIOLOGY
卷 54, 期 5, 页码 3205-3218

出版社

SPRINGER
DOI: 10.1007/s12035-016-9887-1

关键词

Light-emitting diode; Phototherapy; Acute pain; Chemical and thermal stimuli; Analgesia

资金

  1. Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq)
  2. Fundacao de Amparo a Pesquisa e Inovacao do Estado de Santa Catarina (FAPESC)
  3. Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES), Brazil

向作者/读者索取更多资源

Low-intensity phototherapy using light fonts, like light-emitting diode (LED), in the red to infrared spectrum is a promising alternative for the treatment of pain. However, the underlying mechanisms by which LED phototherapy reduces acute pain are not yet well understood. This study investigated the analgesic effect of multisource LED phototherapy on the acute nocifensive behavior of mice induced by thermal and chemical noxious stimuli. The involvement of central afferent C fibers sensitive to capsaicin in this effect was also investigated. Mice exposed to multisource LED (output power 234, 390, or 780 mW and power density 10.4, 17.3, and 34.6 mW/cm(2), respectively, from 10 to 30 min of stimulation with a wavelength of 890 nm) showed rapid and significant reductions in formalin- and acetic acid-induced nocifensive behavior. This effect gradually reduced but remained significant for up to 7 h after LED treatment in the last model used. Moreover, LED (390 mW, 17.3 mW/cm(2)/20 min) irradiation also reduced nocifensive behavior in mice due to chemical [endogenous (i.e., glutamate, prostaglandins, and bradykinin) or exogenous (i.e., formalin, acetic acid, TRPs and ASIC agonist, and protein kinase A and C activators)] and thermal (hot plate test) stimuli. Finally, ablating central afferent C fibers abolished LED analgesia. These experimental results indicate that LED phototherapy reduces the acute painful behavior of animals caused by chemical and thermal stimuli and that LED analgesia depends on the integrity of central afferent C fibers sensitive to capsaicin. These findings provide new information regarding the underlying mechanism by which LED phototherapy reduces acute pain. Thus, LED phototherapy may be an important tool for the management of acute pain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据