4.8 Article

Stable operation of polymer electrolyte-solid-state batteries via lone-pair electron fillers

期刊

NANO RESEARCH
卷 -, 期 -, 页码 -

出版社

TSINGHUA UNIV PRESS
DOI: 10.1007/s12274-023-6142-8

关键词

nanotube filler; polymer electrolyte; ion transport; room temperature (RT) operation

向作者/读者索取更多资源

The study focuses on utilizing inorganic tubular fillers with abundant lone-pair atoms to improve the ionic conductivity of polymer solid-state electrolyte membrane at room temperature, leading to enhanced performance of lithium battery.
Due to the increasing demand and wide applications of lithium-ion batteries, higher requirements have been placed on the energy density and safety. Polymer solid-state electrolytes have gained significant popularity due to their excellent interface compatibility and safety. However, their applications have been greatly restricted by the high crystallinity at room temperature, which hinders the transport of lithium ions. Herein, we utilize inorganic tubular fillers with abundant lone-pair atoms to reduce the crystallinity of the polyethylene oxide (PEO) solid-state electrolyte membrane and improve its ionic conductivity at room temperature, enabling stable operation of the battery. The tubular lone-pair-rich inorganic fillers play a key role in providing avenues for both internal and external charge transportation. The surface lone-pair electrons facilitate the dissociation and transport of lithium ions, while the internally tubular electron-rich layer attracts ions into the cavities, further enhancing the ion transport. After 100 cycles at room temperature, the lithium battery loaded with this solid-state electrolyte membrane delivers a specific capacity of 141.6 mAh & BULL;g-1, which is 51.3% higher compared to the membrane without the fillers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据