4.6 Article

Structural Modeling of Nanobodies: A Benchmark of State-of-the-Art Artificial Intelligence Programs

期刊

MOLECULES
卷 28, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/molecules28103991

关键词

artificial intelligence; protein structure; protein modeling; nanobody; antibody

向作者/读者索取更多资源

The application of nanobodies is expanding, but the structural modeling of these molecules remains a challenge. Various AI-based programs have been developed to address this problem, but modeling CDR3 remains difficult.
The number of applications for nanobodies is steadily expanding, positioning these molecules as fast-growing biologic products in the biotechnology market. Several of their applications require protein engineering, which in turn would greatly benefit from having a reliable structural model of the nanobody of interest. However, as with antibodies, the structural modeling of nanobodies is still a challenge. With the rise of artificial intelligence (AI), several methods have been developed in recent years that attempt to solve the problem of protein modeling. In this study, we have compared the performance in nanobody modeling of several state-of-the-art AI-based programs, either designed for general protein modeling, such as AlphaFold2, OmegaFold, ESMFold, and Yang-Server, or specifically designed for antibody modeling, such as IgFold, and Nanonet. While all these programs performed rather well in constructing the nanobody framework and CDRs 1 and 2, modeling CDR3 still represents a big challenge. Interestingly, tailoring an AI method for antibody modeling does not necessarily translate into better results for nanobodies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据