4.5 Article

Putative NAD(P)-Binding Rossmann Fold Protein Is Involved in Chitosan-Induced Peroxidase Activity and Lipoxygenase Expression in Physcomitrium patens

期刊

出版社

AMER PHYTOPATHOLOGICAL SOC
DOI: 10.1094/MPMI-07-23-0094-R

关键词

chitosan; defense response; oxidative burst; peroxidase activity; Rossmann fold

向作者/读者索取更多资源

This study reveals the involvement of a Rossmann fold protein in the chitosan response in the moss Physcomitrium patens. Knocking out the Rossmann fold protein gene resulted in decreased peroxidase activity and reduced expression of the LOX gene, suggesting its importance in the signaling pathway leading to the oxidative burst and basal expression of the LOX gene in P. patens.
Oxidative burst, the rapid production of high levels of reactive oxygen species in response to external stimuli, is an early defense reaction against pathogens. The fungal elicitor chitosan causes an oxidative burst in the moss Physcomitrium patens (formerly Physcomitrella patens), mainly due to the peroxidase enzyme Prx34. To better understand the chitosan responses in P. patens, we conducted a screen of part of a P. patens mutant collection to isolate plants with less peroxidase activity than wild-type (WT) plants after chitosan treatment. We isolated a P. patens mutant that affected the gene encoding NAD(P)-binding Rossmann fold protein (hereafter, Rossmann fold protein). Three Rossmann fold protein-knockout (KO) plants (named Rossmann fold KO lines) were generated and used to assess extracellular peroxidase activity and expression of defense-responsive genes, including alternative oxidase, lipoxygenase (LOX), NADPH oxidase, and peroxidase (Prx34) in response to chitosan treatment. Extracellular (apoplastic) peroxidase activity was significantly lower in Rossmann fold KO lines than in WT plants after chitosan treatments. Expression of the LOX gene in Rossmann fold KO plants was significantly lower before and after chitosan treatment when compared with WT. Peroxidase activity assays together with gene expression analyses suggest that the Rossmann fold protein might be an important component of the signaling pathway leading to oxidative burst and basal expression of the LOX gene in P. patens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据