4.4 Article

A multi-tier computational screening framework to effectively search the mutational space of SARS-CoV-2?receptor binding motif to identify mutants with enhanced ACE2 binding abilities

期刊

MOLECULAR INFORMATICS
卷 -, 期 -, 页码 -

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/minf.202300055

关键词

binding free energy; MM/GBSA; mutational space screening; RBD-ACE2 interface; SARS-CoV-2; steered molecular dynamics

向作者/读者索取更多资源

Researchers have developed a screening platform to identify SARS-CoV-2 mutants with enhanced ACE2 binding abilities. They found four mutations (F490K, S494K, G504F, and P499L) that formed stable complexes with more hydrogen bonds and salt-bridge interactions with ACE2. Simulation data suggests that these mutations allosterically alter the packing of the RBM interface, resulting in significantly higher rupture force for RBD-ACE2 contacts.
SARS-CoV-2 gained crucial mutations at the receptor binding domain (RBD) that often changed the course of the pandemic leading to new waves with increased case fatality. Variants are observed with enhanced transmission and immune invasion abilities. Thus, predicting future variants with enhanced transmission ability is a problem of utmost research interest. Here, we have developed a multi-tier exhaustive SARS-CoV-2 mutation screening platform combining MM/GBSA, extensive molecular dynamics simulations, and steered molecular dynamics to identify RBD mutants with enhanced ACE2 binding capability. We have identified four RBM mutations (F490K, S494K, G504F, and the P499L) with significantly higher ACE2 binding abilities than wild-type RBD. Compared to wild-type RBD, they all form stable complexes with more hydrogen bonds and salt-bridge interactions with ACE2. Our simulation data suggest that these mutations allosterically alter the packing of the RBM interface of the RBD-ACE2 complex. As a result, the rupture force required to break the RBD-ACE2 contacts is significantly higher for these mutants.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据