4.6 Article

Protumorigenic role of the atypical cadherin FAT1 by the suppression of PDCD10 via RelA/miR221-3p/222-3p axis in glioblastoma

期刊

MOLECULAR CARCINOGENESIS
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/mc.23617

关键词

FAT1; glioblastoma; microRNA; migration; invasion; miR221-3p; miR222-3p; oncogene; PDCD10

向作者/读者索取更多资源

This study reveals that the atypical cadherin FAT1 plays a role in promoting tumor development in glioblastoma by regulating the expression of miR-221-3p and miR-222-3p. FAT1 up-regulates NF-κB RelA, which further enhances the expression of miR-221-3p and miR-222-3p. These miRNAs suppress the tumor suppressor gene PDCD10, leading to increased clonogenicity and invasive potential of glioma cells. Patients with high levels of FAT1 and miR-221-3p expression have a shorter overall survival.
The atypical cadherin FAT1 function either as a pro or antitumorigenic in tumors of different tissue origins. Our group previously demonstrated the protumorigenic nature of FAT1 signaling in glioblastoma (GBM). In this study, we investigated how FAT1 influences the expression of clustered oncomiRs (miR-221-3p/miR-222-3p) and their downstream effects in GBM. Through several experiments involving the measurement of specific gene/microRNA expression, gene knockdowns, protein and cellular assays, we have demonstrated a novel oncogenic signaling pathway mediated by FAT1 in glioma. These results have been verified using antimiRs and miR-mimic assays. Initially, in glioma-derived cell lines (U87MG and LN229), we observed FAT1 as a novel up-regulator of the transcription factor NF & kappa;B-RelA. RelA then promotes the expression of the clustered-oncomiRs, miR-221-3p/miR-222-3p, which in turn suppresses the expression of the tumor suppressor gene (TSG), PDCD10 (Programmed cell death protein10). The suppression of PDCD10, and other known TSG targets (PTEN/PUMA), by miR-221-3p/miR-222-3p, leads to increased clonogenicity, migration, and invasion of glioma cells. Consistent with our in-vitro findings, we observed a positive expression correlation of FAT1 and miR-221-3p, and an inverse correlation of FAT1 and the miR-targets (PDCD10/PTEN/PUMA), in GBM tissue-samples. These findings were also supported by publicly available GBM databases (The Cancer Genome Atlas [TCGA] and The Repository of Molecular Brain Neoplasia Data [Rembrandt]). Patients with tumors displaying high levels of FAT1 and miR-221-3p expression (50% and 65% respectively) experienced shorter overall survival. Similar results were observed in the TCGA-GBM database. Thus, our findings show a novel FAT1/RelA/miR-221/miR-222 oncogenic-effector pathway that downregulates the TSG, PDCD10, in GBM, which could be targeted therapeutically in a specific manner.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据