4.5 Article

Photocurrent performance and enhancement of opto-electronic properties of spray pyrolysis deposited ZnO thin films via V-doping

期刊

MODERN PHYSICS LETTERS B
卷 38, 期 9, 页码 -

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S021798492450060X

关键词

Vanadium-doped ZnO; photoluminescence; bandgap energy; carrier mobility; photocurrent

向作者/读者索取更多资源

This study reports on the deposition of highly transparent conducting n-type zinc oxide (ZnO) thin films on FTO substrates, using an optimized doping process. The results showed that 4% vanadium (V) doping significantly enhances the crystallinity of the thin films, improves the electrical conductivity and reduces deep level defects in ZnO. The V-doped ZnO thin films exhibit high transparency, enhanced UV emission, and improved carrier mobility, leading to higher photocatalytic performance.
This study reports on the deposition of highly transparent conducting n-type zinc oxide (ZnO) thin films on FTO substrates, via an optimized doping process. Our work is focused on doping zinc oxide with vanadium (V) using spray pyrolysis technique and ensure the synthesis of nanoparticles-shaped ZnO, with an improved optical, microstructural and electrical properties for solar cells applications, as optical window material. Undoped and V-doped ZnO thin films, with careful optimized amounts (2, 4, 6 and 8 at.%), were grown at maintained 550(degrees)C pre-heated substrate during the deposition process, which enables us to obtain nano-sized ZnO particles. We proved that 4 at.% is the optimum V content that enhances the crystallinity of the grown thin film noticeably. With an average transmittance of 80%, the deposited thin films revealed high transparency in the visible domain with a slight decrease in optical transmission which might result from additional scattering. UV-Visible analysis showed that increasing V amounts, a resulting decrease in the energy bandgap (E-g) is obtained from 3.26eV to 3.17eV for 4 at.% of V content. Moreover, deep level defects in zinc oxide can be reduced with vanadium doping and consequently strengthen the UV emission. The UV emission peak intensity rises with increasing V-doping amount then decreases slightly at 8% of V content. The electrical properties measurements showed a decrease in resistivity from 2.8 10(-2)Omega & sdot;cm to 0.9 10(-2)Omega & sdot;cm when doping with 4 at.% of V. The crucial effect of the V-doping of ZnO was also demonstrated via the enhancement of carrier mobility that attains 38.5cm(2)/V & sdot;s at the optimum vanadium content. The photocurrent analysis revealed much higher visible light absorption in the V-doped zinc oxide thin films than that of undoped film. The photocatalytic activity enhancements are attributed to the lower recombination rate of the photogenerated electron-hole pairs, the narrowed bandgap, yielding a higher photocatalytic performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据