4.5 Review

A Review on Floc-Flotation of Fine Particles: Technological Aspects, Mechanisms, and Future Perspectives

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/08827508.2023.2236770

关键词

Flocculation-flotation; flocculant; adsorption mechanism; floc generation; fine flotation; >

向作者/读者索取更多资源

Flotation process is commonly used for mineral beneficiation, and the particle size is an important factor affecting its effectiveness. Fine and ultra-fine particles present challenges in flotation due to their large surface area and reduced collision and attachment probabilities. Agglomeration and flocculation techniques combined with flotation show promise in economically recovering these particles, although there are still gaps in understanding the exact mechanisms and effects on flotation behavior.
Flotation process is the most common beneficiation method of almost all types of minerals. The desirable result of the process is dependent on various factors. One of the most effective parameters in this regard is the particle size. Generally, acceptable results can be obtained by adjusting particle size in an optimum and specific range, and flotation of coarser or finer than this range is always intricate and problematic. Specifically, in the case of fine and ultra-fine particles, this complexity becomes more aggravated most importantly because of the massive specific area and the reduction of particle-bubble collision and attachment probabilities. There is a vast amount of literature on fine particles flotation using micro- and nanobubbles, intensified flotation machines, and different chemical reagents, however, the most promising procedure in this regard can be considered as the increment of particle sizes via agglomeration and flocculation techniques combined with flotation. This technique provides great opportunities for recovering fine and ultra-fine particles economically and increment of sustainable processing. However, there are some gaps and obscure points such as the exact mechanism of bubble-floc adsorption, interaction between flocs and reagents, pulp properties variations due to flocculation, and its effects on flotation behavior. This paper categorizes and describes diverse aspects of this combined novel technique in detail and provides a comprehensive source for readers to have a deeper insight into this intricate process. First of all, the physicochemical characteristics of the process have been described thoroughly from perspectives including the type and structure of applied chemicals, influential parameters, and involved adsorption mechanisms. It is followed by a detailed interpretation of different floc-flotation techniques as well as their cons and pros, effective parameters, and possible improvement and optimization approaches. Further, some similar techniques such as oil agglomeration, hydrophobic-hydrophilic Separation, and carrier flotation were described and compared with present technique of floc-flotation. Technological aspects of the process as well as an industrial case study of this technique were other areas which have been investigated in this paper and finally, scientific and technical gaps in this branch of flotation technology were extracted to open-up new horizon ahead of researchers active and/or interested in this field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据