4.7 Article

Techniques and mechanisms of bacteria immobilization on biochar for further environmental and agricultural applications

期刊

MICROBIOLOGICAL RESEARCH
卷 278, 期 -, 页码 -

出版社

ELSEVIER GMBH
DOI: 10.1016/j.micres.2023.127534

关键词

Biochar; Bacteria; Biomaterials; Immobilization; Sustainable agriculture; Bioremediation

向作者/读者索取更多资源

This review introduces the techniques and mechanisms of bacteria immobilization on biochar, as well as its applications in bioremediation and agriculture. The immobilization characteristics of biochar depend on pyrolysis methods, raw materials, and properties of biochar. Scanning electron microscope and colony forming unit analysis are commonly used to verify the immobilization efficiency. Applying biochar-immobilized bacteria can improve soil quality, plant growth, and crop yield.
Bacteria immobilization on biochar is a promising approach to achieve high concentration and stability of microbial cells for several applications. The present review addressed the techniques utilized for bacteria immobilization on biochar, discussing the mechanisms involved in this process, as well as the further utilization in bioremediation and agriculture. This article presents three immobilization techniques, which vary according to their procedures and conditions, including cell growth, adsorption, and adaptation. The mechanisms for cell immobilization are primarily adsorption and biofilm formation on biochar. The favorable characteristics of biochar immobilization depend on the pyrolysis methods, raw materials, and properties of biochar, such as surface area, pore size, pH, zeta potential, hydrophobicity, functional groups, and nutrients. Scanning electron microscope (SEM) and colony forming unit (CFU) are the analyses commonly carried out to verify the efficiency of bacteria immobilization. The benefits of applying biochar-immobilized bacteria include soil decontamination and quality improvement, which can improve plant growth and crop yield. Therefore, this emerging technology represents a promising solution for environmental and agricultural purposes. However, it is important to evaluate the potential adverse impacts on native microbiota by introducing exogenous microorganisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据