4.7 Article

Heterologous production of the insecticidal pea seed albumin PA1 protein by Pichia pastoris and protein engineering to potentiate aphicidal activity via fusion to snowdrop lectin Galanthus nivalis agglutinin; GNA)

期刊

MICROBIAL CELL FACTORIES
卷 22, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s12934-023-02176-1

关键词

Pea seed albumin; Pa1b; Snowdrop lectin; Fusion protein; Pichia pastoris; V-ATPases aphid; Bumble bee

向作者/读者索取更多资源

This study aimed to investigate the potential of the pea albumin protein PA1b as a bioinsecticide. The researchers successfully produced a recombinant full-length pea albumin protein (PAF) and a fusion protein (PAF/GNA) in yeast. PAF/GNA showed enhanced insecticidal activity compared to PAF, both orally and upon contact. These findings highlight the potential of plant protein-based bioinsecticides for future commercial development.
BackgroundNew bioinsecticides with novel modes of action are urgently needed to minimise the environmental and safety hazards associated with the use of synthetic chemical pesticides and to combat growing levels of pesticide resistance. The pea seed albumin PA1b knottin peptide is the only known proteinaceous inhibitor of insect vacuolar adenosine triphosphatase (V-ATPase) rotary proton pumps. Oral toxicity towards insect pests and an absence of activity towards mammals makes Pa1b an attractive candidate for development as a bioinsecticide. The purpose of this study was to investigate if Pichia pastoris could be used to express a functional PA1b peptide and if it's insecticidal activity could be enhanced via engineering to produce a fusion protein comprising the pea albumin protein fused to the mannose-specific snowdrop lectin (Galanthus nivalis agglutinin; GNA).ResultsWe report the production of a recombinant full-length pea albumin protein (designated PAF) and a fusion protein (PAF/GNA) comprised of PAF fused to the N-terminus of GNA in the yeast Pichia pastoris. PAF was orally toxic to pea (Acyrthosiphon pisum) and peach potato (Myzus persicae) aphids with respective, Day 5 LC50 values of 54 & mu;M and 105 & mu;M derived from dose-response assays. PAF/GNA was significantly more orally toxic as compared to PAF, with LC50 values tenfold (5 & mu;M) and 3.3-fold (32 & mu;M) lower for pea and peach potato aphids, respectively. By contrast, no phenotypic effects were observed for worker bumble bees (Bombus terristrus) fed PAF, GNA or PAF/GNA in acute toxicity assays. Confocal microscopy of pea aphid guts after pulse-chase feeding fluorescently labelled proteins provides evidence that enhanced efficacy of the fusion protein is attributable to localisation and retention of PAF/GNA to the gut epithelium. In contact assays the fusion protein was also found to be significantly more toxic towards A. pisum as compared to PAF, GNA or a combination of the two proteins.ConclusionsOur results suggest that GNA mediated binding to V-type ATPase pumps acts to potentiate the oral and contact aphicidal activity of PAF. This work highlights potential for the future commercial development of plant protein-based bioinsecticides that offer enhanced target specificity as compared to chemical pesticides, and compatibility with integrated pest management strategies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据