4.7 Article

Novel Targeted Therapy for Precursor B-Cell Acute Lymphoblastic Leukemia: Anti-CD22 Antibody-MXD3 Antisense Oligonucleotide Conjugate

期刊

MOLECULAR MEDICINE
卷 22, 期 -, 页码 632-642

出版社

SPRINGER
DOI: 10.2119/molmed.2015.00210

关键词

-

资金

  1. Hartwell Foundation
  2. Keaton Raphael Memorial Foundation
  3. National Center for Advancing Translational Sciences, NIH [UL1 TR000002]
  4. CTSC-MCRTP
  5. California Institute for Regenerative Medicine
  6. NIH [R01GM099688]
  7. Biostatistics Shared Resource, UC Davis Comprehensive Cancer Center Support Grant [P30CA093373]

向作者/读者索取更多资源

The exponential rise in molecular and genomic data has generated a vast array of therapeutic targets. Oligonucleotide-based technologies to down regulate these molecular targets have promising therapeutic efficacy. However, there is relatively limited success in translating this into effective in vivo cancer therapeutics. The primary challenge is the lack of effective cancer cell-targeted delivery methods, particularly for a systemic disease such as leukemia. We developed a novel leukemia-targeting compound composed of a monoclonal antibody directly conjugated to an antisense oligonucleotide (ASO). Our compound uses an ASO that specifically targets the transcription factor MYC-associated factor X (MAX) dimerization protein 3 (MXD3), which was previously identified to be critical for precursor B-cell (preB) acute lymphoblastic leukemia (ALL) cell survival. The MXD3 ASO was conjugated to an anti-cluster of differentiation-22 (CD22) antibody (alpha CD22 Ab) that specifically targets most preB ALL. We demonstrated that the alpha CD22 Ab-ASO conjugate treatment showed MXD3 protein knockdown and leukemia cell apoptosis in vitro. We also demonstrated that the conjugate treatment showed cytotoxicity in normal B cells, but not in other hematopoietic cells, including hematopoietic stem cells. Furthermore, the conjugate treatment at the lowest dose tested (0.2 mg/kg Ab for 6 doses - twice a week for 3 wks) more than doubled the mouse survival time in both Reh (median survival time 20.5 versus 42.5 d, p < 0.001) and primary preB ALL (median survival time 29.3 versus 63 d, p < 0.001) xenograft models. Our conjugate that uses alpha CD22 Ab to target the novel molecule MXD3, which is highly expressed in preB ALL cells, appears to be a promising novel therapeutic approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据