4.6 Article

Improvement of LED-based photoacoustic imaging using lag-coherence factor (LCF) beamforming

期刊

MEDICAL PHYSICS
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/mp.16780

关键词

beamforming; LED-PAI; photoacoustic tomography

向作者/读者索取更多资源

The image quality of LED-based photoacoustic (PA) imaging is not optimal, especially for sub-surface vascular imaging applications, due to low signal-to-noise ratio and limited imaging depth.
BackgroundOwing to its portability, affordability, and energy-efficiency, LED-based photoacoustic (PA) imaging is increasingly becoming popular when compared to its laser-based alternative, mainly for superficial vascular imaging applications. However, this technique suffers from low SNR and thereby limited imaging depth. As a result, visual image quality of LED-based PA imaging is not optimal, especially in sub-surface vascular imaging applications.PurposeCombination of linear ultrasound (US) probes and LED arrays are the most common implementation in LED-based PA imaging, which is currently being explored for different clinical imaging applications. Traditional delay-and-sum (DAS) is the most common beamforming algorithm in linear array-based PA detection. Side-lobes and reconstruction-related artifacts make the DAS performance unsatisfactory and poor for a clinical-implementation. In this work, we explored a new weighting-based image processing technique for LED-based PAs to yield improved image quality when compared to the traditional methods.MethodsWe are proposing a lag-coherence factor (LCF), which is fundamentally based on the combination of the spatial auto-correlation of the detected PA signals. In LCF, the numerator contains lag-delay-multiply-and-sum (DMAS) beamformer instead of a conventional DAS beamformer. A spatial auto-correlation operation is performed between the detected US array signals before using DMAS beamformer. We evaluated the new method on both tissue-mimicking phantom (2D) and human volunteer imaging (3D) data acquired using a commercial LED-based PA imaging system.ResultsOur novel correlation-based weighting technique showed LED-based PA image quality improvement when it is combined with conventional DAS beamformer. Both phantom and human volunteer imaging results gave a direct confirmation that by introducing LCF, image quality was improved and this method could reduce side-lobes and artifacts when compared to the DAS and coherence-factor (CF) approaches. Signal-to-noise ratio, generalized contrast-to-noise ratio, contrast ratio and spatial resolution were evaluated and compared with conventional beamformers to assess the reconstruction performance in a quantitative way. Results show that our approach offered image quality enhancement with an average signal-to-noise ratio and spatial resolution improvement of around 20% and 25% respectively, when compared with conventional CF based DAS algorithm.ConclusionsOur results demonstrate that the proposed LCF based algorithm performs better than the conventional DAS and CF algorithms by improving signal-to-noise ratio and spatial resolution. Therefore, our new weighting technique could be a promising tool to improve the performance of LED-based PA imaging and thus accelerate its clinical translation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据