4.6 Article

Effect of EDTA-modified alumina composite abrasive on the CMP performance of sapphire substrate

期刊

MATERIALS CHEMISTRY AND PHYSICS
卷 312, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.matchemphys.2023.128651

关键词

Chemical mechanical polishing; Alumina composite abrasive; Ethylenediamine tetraacetic acid; Graft modification

向作者/读者索取更多资源

In this study, EDTA-grafted alumina composite abrasives were produced by a two-step process for the CMP of sapphire substrates. Experimental results showed that the modified abrasives exhibited better dispersion properties and significantly improved polishing efficiency, with higher material removal rates and lower surface roughness. The combination of chemical reaction and mechanical action enhanced the CMP performance.
Sapphire is one of the most widely used substrate materials for semiconductor lighting. With the improvement of chemical mechanical polishing (CMP) processing technology for sapphire substrate, mass production, and cost control requires faster polishing efficiency and better surface quality. In CMP, alumina abrasive is widely used for its high polishing rate, but it also has the disadvantages of easy agglomeration and poor polishing quality. Therefore, ethylenediamine tetraacetic acid (EDTA)-grafted alumina composite abrasives were produced by a two-step process for the sapphire substrate CMP. As demonstrated by time of flight secondary ion mass spectrometry and fourier transform infrared spectroscopy, EDTA has been successfully grafted onto the surface of alumina particles. As shown by the scanning electron microscope, particle size distribution, and zeta potential analyses, the modified alumina composite abrasives exhibit superior dispersion properties than pure alumina particles. CMP experiment results show that the material removal rate (MRR) of the alumina composite abrasives can reach up to 2.6 mu m/h, and the surface roughness (Sa) of the sapphire substrate can be reduced to 0.89 nm, which is 53 % higher and 66 % lower than pure alumina, respectively. According to X-ray photoelectron spectroscopy, the chemical etch of modified abrasive particles was strengthened, and the complex reaction occurred throughout the CMP process to generate the C-O-Al structural compound. Meanwhile, the friction coefficient test and contact angle test were combined to create the contact wear model. It shows that the addition of EDTA expands the contact area between the composite abrasives and the surface of substrates, improving the mechanical interaction during CMP. The chemical reaction and mechanical action combine and promote each other to enhance the CMP performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据