4.7 Article

Hydration kinetics of Portland cement shifting from silicate to aluminate dominance based on multi-mineral reactions and interactions

期刊

MATERIALS & DESIGN
卷 233, 期 -, 页码 -

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.matdes.2023.112228

关键词

Portland cement; Kinetics shift; Interaction; Mineral composition

向作者/读者索取更多资源

This study proposed a theoretical model to investigate multi-mineral reactive transport processes and the effect of multi-mineral reactions on cement hydration kinetics shifting from silicate to aluminate dominance. The model calculates the reaction rates, ionic diffusion, and adsorption based on the ionic concentration, and the hydration heat flow based on the reaction rates. The model was validated and used to study the combined effect of multi-mineral reactions on hydration kinetics.
A theoretical model for cement hydration was proposed to study multi-mineral reactive transport processes under various mineral compositions and determine the effect of multi-mineral reactions and interactions on cement hydration kinetics shifting from silicate to aluminate dominance. The reaction rates of each mineral dissolution, product precipitation, ionic diffusion, and adsorption were calculated individually through the degrees of undersaturation and supersaturation associated with the ionic concentration, all of which were coupled in the modified Poisson-Nernst-Planck equation. The hydration heat flow was then theoretically calculated by the superposition of the reaction rates of silicate and aluminate phases, which was derived from the calculated ionic concentration. The model was validated by comparison with experimental data obtained under various conditions, showing consistency. The combined effect of multi-mineral reactions and interactions on hydration kinetics was investigated using the model, and the results indicated that (1) faster dissolution of gypsum or a higher ratio of tricalcium aluminate to tricalcium silicate leads to a larger time interval between silicate and aluminate peaks; (2) faster precipitation of calcium silicate hydrate results in a more significant difference between silicate and aluminate peaks; and (3) the sulfate ion retards cement hydration kinetics shifting from silicate to aluminate dominance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据