4.7 Article

Unraveling prokaryotic diversity distribution and functional pattern on nitrogen and methane cycling in the subtropical Western North Pacific Ocean

期刊

MARINE POLLUTION BULLETIN
卷 196, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.marpolbul.2023.115569

关键词

Western Pacific Ocean; Oxygen minimum layer; Warming; Acidification; Nitrous oxide; Methane oxidation; Prokaryotes

向作者/读者索取更多资源

Prokaryotes in the Western North Pacific Ocean play a crucial role in marine nitrogen and methane cycles. This study examined the impact of ocean warming, acidification, deoxygenation, and anthropogenic-nitrogen-deposition on the community changes and metabolic modifications of prokaryotes in different layers of the ocean. The results shed light on the effects of climate change on the open ocean ecosystem and emphasize the importance of climate drivers in nitrogen and methane emissions.
Prokaryotes play an important role in marine nitrogen and methane cycles. However, their community changes and metabolic modifications to the concurrent impact of ocean warming (OW), acidification (OA), deoxygenation (OD), and anthropogenic-nitrogen-deposition (AND) from the surface to the deep ocean remains unknown. We examined here the amplicon sequencing approach across the surface (0-200 m; SL), intermediate (200-1000 m; IL), and deep layers (1000-2200 m; DL), and characterized the simultaneous impacts of OW, OA, OD, and AND on the Western North Pacific Ocean prokaryotic changes and their functional pattern in nitrogen and methane cycles. Results showed that SL possesses higher ammonium oxidation community/metabolic composition assumably the reason for excess nitrogen input from AND and modification of their kinetic properties to OW adaptation. Expanding OD at IL showed hypoxic conditions in the oxygen minimum layer, inducing higher microbial respiration that elevates the dimerization of nitrification genes for higher nitrous oxide production. The aerobic methane-oxidation composition was dominant in SL presumably the reason for adjustment in prokaryotic optimal temperature to OW, while anaerobic oxidation composition was dominant at IL due to the evolutionary changes coupling with higher nitrification. Our findings refocus on climate-change impacts on the open ocean ecosystem from the surface to the deep-environment integrating climate-drivers as key factors for higher nitrous-oxide and methane emissions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据