4.7 Article

Warming and parasitism impair the performance of Baltic native and invasive macroalgae and their associated fauna

期刊

LIMNOLOGY AND OCEANOGRAPHY
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/lno.12390

关键词

-

向作者/读者索取更多资源

Global warming, bioinvasions, and parasitism have significant impacts on single-species performances and species interactions in marine ecosystems. Therefore, a multi-stressor approach is needed to better understand the effects of these factors. This study examined the effects of warming and parasitism on a benthic community in a mesocosm setting and found that both factors had detrimental effects on the growth and survival of certain species. Additionally, the study showed that parasite development and infection intensity were influenced by temperature. Overall, this research highlights the complex interactions between warming, parasitism, and species dynamics in marine ecosystems.
Global warming, bioinvasions, and parasitism affect single-species performances and species interactions, substantially impacting the structure and stability of marine ecosystems. In light of accelerated global change, the information derived from studies focusing on single species and single drivers is insufficient, calling for a multi-stressor approach under near-natural conditions. We investigated the effects of warming (+3 & DEG;C) on the performance of a benthic community composed of native and invasive macroalgae, consumers and a trematode parasite in a mesocosm setting. We also assessed the effects of warming and parasitism on the survival and growth of gastropods and mussels and the thermal dependency of trematode performance. Our findings show that warming and grazing by infected gastropods had a large detrimental effect on the invasive macroalga growth. Furthermore, the single and interactive effects of parasitism and warming were detrimental to intermediate host survival and growth, especially to large mussels. Finally, cercarial emergence positively correlated to the natural peaks of summer temperatures, while infection intensity in mussels was higher in larger individuals. Our findings suggest that grazing and warming will be detrimental to the invasive macroalga, favoring the native alga. Moreover, parasitism will enhance grazing, especially in summer, when higher temperatures trigger parasite development. However, parasite-enhanced grazing may be buffered by higher mortality or a shift in the size of infected intermediate hosts under warming. Our findings demonstrate how complex effects of ocean warming can be on food webs and how they can be mediated by parasitism and, as a result, influence native and invasive macroalgae differently.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据