4.7 Article

Dark carbon fixation in stream carbon cycling

期刊

LIMNOLOGY AND OCEANOGRAPHY
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/lno.12430

关键词

-

向作者/读者索取更多资源

This study investigates the microbial biomass production in headwater streams and quantifies the contribution of dark carbon fixation (DCF) in these ecosystems. The results show that DCF in water and litter is similar in magnitude to heterotrophic production (HP), while in sediment it is significantly lower. Flow and turbulence in streams may accelerate chemosynthesis.
Headwater streams are often characterized by turbulence, organic matter inputs from terrestrial systems, net heterotrophy, and the microbial loop supplying carbon and energy for consumers. However, ecological models overlook dark carbon fixation (DCF), the light-independent inorganic carbon uptake, mainly based on chemosynthesis, using energy yields from redox reactions. The quantification of microbial biomass production, including DCF, heterotrophic production (HP), gross primary production (GPP), and ecosystem respiration (ER) in lotic aquatic systems, has long yet to be addressed. Here, we investigate HP and DCF in water, sediment, and litter in addition to GPP and ER from streams in pristine rainforests in three distinct sub-basins of the Amazon River, assessing the variety of turbid, black, and clear waters. We observed mean (min-max) values of microbial biomass production of about 0.1 (0.02-1.2), 3.2 (0.8-14.1), and 0.1 (0.02-0.5) mg C m-2 h-1 in water, sediment, and litter samples, in which DCF : HP showed mean (min-max) values of 0.5 (0.2-2), 0.02 (0.001-0.07), and 0.2 (0.001-0.5). Hence, measurements yielded DCF of similar magnitude as HP in water and litter but significantly lower in sediment, indicating that DCF supplied more carbon to planktonic and litter microbes than in top sediments of streams. Literature comparisons show similar DCF and GPP, both being lower than ER in streams. Finally, we found stream DCF higher than in lentic systems, suggesting that flow and turbulence may accelerate chemosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据