4.7 Article

Identification of a novel class of cortisol biosynthesis inhibitors and its implications in a therapeutic strategy for hypercortisolism

期刊

LIFE SCIENCES
卷 325, 期 -, 页码 -

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.lfs.2023.121744

关键词

Adrenal gland; Steroidogenesis; Corticosteroids; Cortisol; Cholesterol; Benzimidazolylureas

向作者/读者索取更多资源

This study developed a new class of small molecules that can inhibit cortisol production and suppress cholesterol synthesis through gene regulation. The findings provide a new pharmacological strategy for treating conditions such as Cushing's syndrome.
Aims: Dysregulation of adrenocortical steroid (corticosteroids) biosynthesis leads to pathological conditions such as Cushing's syndrome. Although several classes of steroid biosynthesis inhibitors have been developed to treat cortisol overproduction, limitations such as insufficient efficacy, adverse effects, and/or tolerability still remain. The present study aimed to develop a new class of small molecules that inhibit cortisol production, and investigated their putative modes of action.Main methods: We screened an in-house chemical library with drug-like chemical scaffolds using human adrenocortical NCI-H295R cells. We then evaluated and validated the effects of the selected compounds at multiple regulatory steps of the adrenal steroidogenic pathway. Finally, genome-wide RNA expression analysis coupled with gene enrichment analysis was conducted to infer possible action mechanisms.Key findings: A subset of benzimidazolylurea derivatives, including a representative compound (designated as CJ28), inhibited both basal and stimulated production of cortisol and related intermediate steroids. CJ28 attenuated the mRNA expression of multiple genes involved in steroidogenesis and cholesterol biosynthesis. Furthermore, CJ28 significantly attenuated de novo cholesterol biosynthesis, which contributed to its suppression of cortisol production.Significance: We identified a novel chemical scaffold that exerts inhibitory effects on cortisol and cholesterol biosynthesis via coordinated transcriptional silencing of gene expression networks. Our findings also reveal an additional adrenal-directed pharmacological strategy for hypercortisolism involving a combination of inhibitors targeting steroidogenesis and de novo cholesterol biosynthesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据