4.6 Article

Synthesis, Surface Activity, and Foamability of Two Short-Chain Fluorinated Sulfonate Surfactants with Ether Bonds

期刊

LANGMUIR
卷 39, 期 41, 页码 14519-14527

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.3c01623

关键词

-

向作者/读者索取更多资源

In this study, two short-chain fluorinated surfactants with ether bonds were synthesized and their surface activity, foam performance, and wettability were measured. The results showed that both surfactants outperformed the alternatives to PFOS in terms of surface activity, foamability, and foam stability.
Fluorinated surfactants are widely used in many fields because of their excellent surface active properties, but their high stability has caused many environmental problems. With the ban and restriction of classical long-chain fluorinated surfactants such as perfluorooctanesulfonic acid (PFOS) and perfluorooctanoic acid (PFOA) worldwide, the development and replacement of their alternatives is now a major challenge. How to reduce environmental persistence, bioaccumulation, and biotoxicity while maintaining high surface activity has become an important issue in the development of fluorinated surfactants. Using short-chain fluorinated surfactants is one of the important solutions to resolve the pollution of organic fluorinated compounds. In this article, we synthesized two short-chain fluorinated surfactants with ether bonds. One of them 6:2 FTESNa (2) used the perfluoroalkyl chain (n-C6F13-) and the other C72 FEESNa (4) used the fluoroether segment with six fluorinated carbons and two oxygens (CF3OCF(CF3)CF2OCF(CF3)). The surface activity, foam performance, and wettability of the two molecules were measured. The surface tensions at critical micelle concentration (gamma(cmc)) and the critical micelle concentration (cmc) of 2 and 4 were 17.6 mN/m (2.2 g/L) and 20.2 mN/m (4.6 g/L), respectively. Both of them were significantly superior to the surface activity of 6:2 FTSNa (7) which is one of the current alternatives for PFOS. Additionally, the foamability and foam stability of both 2 and 4 were better than that of 7. In the aspect of wettability on PTFE, that of 4 was greater than those of 2 and 7. In summary, this work provided a new choice for alternatives of PFOS and PFOA.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据