4.6 Article

Edge and Basal Plane Anisotropy of a Preanodized Pencil Graphite Electrode Surface Revealed Using Scanning Electrochemical Microscopy and Electrocatalytic Dopamine Oxidation as a Molecular Probe

期刊

LANGMUIR
卷 39, 期 36, 页码 12563-12575

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.langmuir.3c01112

关键词

-

向作者/读者索取更多资源

In this study, anodized pencil graphite (PGE*) was used as an electrode to investigate its surface features and molecular level insights. The scanning electrochemical microscopy (SECM) technique and dopamine electrocatalytic oxidation reaction were used to study the surface of PGE*. The results showed that PGE* has a high electronic conductivity and a well-preserved surface. Physicochemical characterizations revealed a higher carbon-oxygen content on the PGE* surface, especially phenolic/alcoholic functional groups. Electrochemical oxidation of dopamine on PGE* demonstrated enhanced peak current signal and reduced oxidation potential. It was also shown that PGE* can be used as a working electrode for instant detection of dopamine-containing pharmaceutical samples.
Pencil graphite (PGE), an ultralow-cost and ready-to-use disposable-type electrode, has been used for various electrochemical and electroanalytical applications after its surface anodization (PGE*, * means preanodized surface). Indeed, systematic studies on mechanistic and surface features of PGE* have not yet been explored. Herein, we report anodized pencil graphite as a model system to study molecular level insights into the surface using a scanning electrochemical microscopy (SECM) technique and dopamine (DA) electrocatalytic oxidation reaction as a molecular probe. The as-prepared PGE* showed an appreciable electronic conductivity similar to the edge-plane graphitic sites (EPPG) of the highly pyrolytic graphitic electrode (HOPG) but without any surface deterioration that occurs with HOPG due to the instability of the EPPG. Physicochemical characterizations by FESEM, FTIR, Raman, and XPS techniques revealed a flake-like exfoliated PGE* surface with higher contents of carbon-oxygen especially phenolic/alcoholic functional groups than the PGE surface. Based on the chronocoulometric experiment, the number of functional groups formed on the PGE* was calculated as 10.9 x 10(-10) mol cm(-2). An independent SECM technique using ferricyanide as a redox probe showed the existence of a heterogeneous surface and exhibited an improved electron transfer activity due to the flake-like graphitic island on the PGE* surface. Investigated DA electrochemical oxidation on PGE* yielded about three times enhancement in the peak current signal and about 200 mV reduction in the oxidation potential over the PGE without any serious surface fouling feature that is related to the intermediate polydopamine formation on the basal-plane graphitic surface of the underlying electrode. As an independent electroanalytical study, a prototype electrochemical sensor using PGE* as a working electrode for instant detection of DA-containing pharmaceutical samples in a 1 mL Eppendorf vial has been demonstrated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据