4.6 Article

Response of bacterial community characteristics in the rhizosphere soil of Stellera chamaejasme L. to its expansion on the Qinghai-Tibet Plateau

期刊

LAND DEGRADATION & DEVELOPMENT
卷 -, 期 -, 页码 -

出版社

WILEY
DOI: 10.1002/ldr.4835

关键词

16S rRNA; bacterial community; metabolic pathway; rhizosphere bacteria; Stellera chamaejasme L

向作者/读者索取更多资源

The expansion of Stellera chamaejasme L. on the Qinghai-Tibet Plateau significantly affects soil nutrient composition and changes the structure of the rhizosphere soil bacterial community. The heavy expansion of Stellera chamaejasme L. reduces bacterial diversity and alters the beta diversity of the bacterial community. Furthermore, the expansion enriches bacterial communities involved in carbon and nitrogen metabolism and promotes plant growth. These findings contribute to understanding and proposing effective restoration measures for grassland degradation caused by poisonous weed invasion.
Qinghai-Tibet Plateau is facing a serious environmental and ecological problem of Meadow degradation. Toxic weed invasion is a typical characteristic of grassland degradation. Soil microbial community composition is sensitive to environmental changes; however, the effects of poisonous weed expansion on soil bacterial communities are unclear. Here, we investigated the effects of Stellera chamaejasme L. expansion on the rhizosphere soil bacterial community structure and function using high-throughput sequencing. The results showed that expansion of Stellera chamaejasme L. changed soil nitrogen(e.g., total nitrogen [TN, -39.02%], available nitrogen [AN, -32.95%]) and other soil nutrients. Redundancy analysis (RDA) and Variance partitioning analysis (VPA) showed that soil nutrients changed, leading to significant changes in the bacterial community structure. The expansion of Stellera chamaejasme L significantly reduced its rhizosphere bacterial alpha diversity, and the beta diversity had significant differences (p < 0.05). Principal coordinates analysis (PCoA) and analysis of similarity (ANOSIM) indicated that the expansion caused significant variations in the rhizosphere bacterial community (R = 0.7037, p < 0.01). The linear discriminant analysis (LDA) effect size (LEfSe) analysis identified 23 biomarkers, most of which were Proteobacteria, indicating that bacteria involved in soil nutrient cycling were better able to survive in the alpine grassland. The Biolog EcoPlate method was used to determine the soil microbial metabolic capacity in different S. chamaejasme expansions. The result showed that heavy expansion had higher carbon source usage ability and microbial diversity index values. Furthermore, it was also found that heavy expansion improved the usage rate of amino acid carbon sources. Tax4Fun prediction analysis further indicated that carbohydrate metabolism, amino acid metabolism, and membrane transport were central metabolic pathways of rhizosphere soil bacteria. Our study found that Stellera chamaejasme L. changed rhizosphere soil nutrient and bacterial community structure during expansion and helped it tolerate harsh conditions by enriching bacterial communities actively involved in carbon and nitrogen metabolism and promoting plant growth. These findings provided evidence to propose effective restoration measures for poisonous grassland degradation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据