4.6 Article

A viral protein targets mitochondria and chloroplasts by subverting general import pathways and specific receptors

期刊

JOURNAL OF VIROLOGY
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/jvi.01124-23

关键词

dual targeting; mitochondria; chloroplast; translocon; receptor; melon necrotic spot virus; coat protein; jasmonic acid; Nicotiana benthamiana

类别

向作者/读者索取更多资源

This study demonstrates for the first time that an exogenous dual-targeted protein utilizes the general import systems to enter mitochondria and chloroplasts, and identifies the important role of plant receptors in this process. Additionally, the study reveals the interconnection between chloroplast protein translocation impairment, retrograde communication, and viral infection.
Dual targeting is a relatively little explored phenomenon by which some proteins are transported to two different subcellular compartments, such as chloroplasts and mitochondria. We previously showed that the R domain and the arm region of the melon necrotic spot virus coat protein could act as a dual-targeting peptide, which shares many relevant features in structure, amino acid composition, and functionality with that of the Thr-tRNA synthetases, the best-studied dual-targeted proteins by far. Here, we show that a viral coat protein hijacks the general pathways for organellar protein import and identifies the coat protein-interacting organellar translocon receptors. Our findings demonstrate for the first time that an exogenous dual-targeted protein uses the general Toc and Tom import systems to reach mitochondria and chloroplasts because it depends on the availability of NbToc75 and NbTom40. Interaction studies, subcellular localization analysis, and viral infection assays in silenced plants revealed the significance of plant receptors, such as the mitochondrion NbOm64 and chloroplast NbToc159A, in this transport. We also show that chloroplast protein translocation impairment could be interlinked with retrograde communication triggering a JA-based response that incidentally impairs viral infection. Future research may profit from our results to better comprehend cellular communication, protein import mechanisms, how preproteins interact with their receptors, and how plant pathogens manipulate host machinery to their ends.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据