4.6 Article

Irinotecan-Induced Gastrointestinal Dysfunction and Pain Are Mediated by Common TLR4-Dependent Mechanisms

期刊

MOLECULAR CANCER THERAPEUTICS
卷 15, 期 6, 页码 1376-1386

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/1535-7163.MCT-15-0990

关键词

-

类别

资金

  1. Florey Medical Research Foundation Doctor Chun Chung Wong and Madam So Sau Lam Memorial Postgraduate Cancer Research Top Up Scholarship
  2. Australian Postgraduate Award
  3. Ray and Shirl Norman Cancer Research Trust Project Grant
  4. Australian Research Council Research Fellowship [DP110100297]

向作者/读者索取更多资源

Strong epidemiological data indicate that chemotherapy-induced gut toxicity and pain occur in parallel, indicating common underlying mechanisms. We have recently outlined evidence suggesting that TLR4 signaling may contribute to both side effects. We therefore aimed to determine if genetic deletion of TLR4 improves chemotherapy-induced gut toxicity and pain. Forty-two female wild-type (WT) and 42 Tlr4 null (-/-) BALB/c mice weighing between 18 and 25 g (10-13 weeks) received a single 270 mg/kg (i.p.) dose of irinotecan hydrochloride or vehicle control and were killed at 6, 24, 48, 72, and 96 hours. Bacterial sequencing was conducted on cecal samples of control animals to determine the gut microbiome profile. Gut toxicity was assessed using validated clinical and histopathologic markers, permeability assays, and inflammatory markers. Chemotherapy-induced pain was assessed using the validated rodent facial grimace criteria, as well as immunologic markers of glial activation in the lumbar spinal cord. TLR4 deletion attenuated irinotecan-induced gut toxicity, with improvements in weight loss (P = 0.0003) and diarrhea (P < 0.0001). Crypt apoptosis was significantly decreased in BALB/c-Tlr4(-/-billy) mice (P < 0.0001), correlating with lower mucosal injury scores (P < 0.005). Intestinal permeability to FITC-dextran (4 kDa) and LPS translocation was greater in WT mice than in BALB/c-Tlr4(-/-billy) (P = 0.01 and P < 0.0001, respectively). GFAP staining in the lumbar spinal cord, indicative of astrocytic activation, was increased at 6 and 72 hours in WT mice compared with BALB/c-Tlr4(-/-billy) mice (P = 0.008, P = 0.01). These data indicate that TLR4 is uniquely positioned to mediate irinotecan-induced gut toxicity and pain, highlighting the possibility of a targetable gut/CNS axis for improved toxicity outcomes. (C) 2016 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据