4.4 Article

A geometric approach to the evolution of altruism

期刊

JOURNAL OF THEORETICAL BIOLOGY
卷 576, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jtbi.2023.111653

关键词

Altruism; Fisher's geometric model; Fixation probability; Kin selection; Optimization; Social evolution

向作者/读者索取更多资源

Fisher's geometric model is a useful tool for predicting key properties of Darwinian adaptation, and here it is applied to predict differences between the evolution of altruistic versus nonsocial phenotypes. The results suggest that the effect size maximizing probability of fixation is smaller in the context of altruism and larger in the context of nonsocial phenotypes, leading to lower overall probability of fixation for altruism and higher overall probability of fixation for nonsocial phenotypes.
Fisher's geometric model provides a powerful tool for making predictions about key properties of Darwinian adaptation. Here, I apply the geometric model to predict differences between the evolution of altruistic versus nonsocial phenotypes. I recover Kimura's prediction that probability of fixation is greater for mutations of intermediate size, but I find that the effect size that maximises probability of fixation is relatively small in the context of altruism and relatively large in the context of nonsocial phenotypes, and that the overall probability of fixation is lower for altruism and is higher for nonsocial phenotypes. Accordingly, the first selective substitution is expected to be smaller, and to take longer, in the context of the evolution of altruism. These results strengthen the justification for employing streamlined social evolutionary methodologies that assume adaptations are underpinned by many genes of small effect.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据