4.7 Article

The fibrous character of pericellular matrix mediates cell mechanotransduction

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2023.105423

关键词

Cell contractility; Pericellular matrix; Mechanical signaling; Mechanobiology

向作者/读者索取更多资源

Cells transmit mechanical signals through the extracellular matrix (ECM) and the pericellular matrix (PCM), but the presence of PCM weakens the transmission. However, elongation or contraction of cells can compensate for this effect and enable long-range force transmission. These findings are relevant to mechanical signaling in development, wound healing, and fibrosis.
Cells in solid tissues sense and respond to mechanical signals that are transmitted through extracellular matrix (ECM) over distances that are many times their size. This long-range force transmission is known to arise from strain-stiffening and buckling in the collagen fiber ECM network, but must also pass through the denser pericellular matrix (PCM) that cells form by secreting and compacting nearby collagen. However, the role of the PCM in the transmission of mechanical signals is still unclear. We therefore studied an idealized computational model of cells embedded within fibrous collagen ECM and PCM. Our results suggest that the smaller network pore sizes associated with PCM attenuates tension-driven collagen-fiber alignment, undermining long-range force transmission and shielding cells from mechanical stress. However, elongation of the cell body or anisotropic cell contraction can compensate for these effects to enable long distance force transmission. Results are consistent with recent experiments that highlight an effect of PCM on shielding cells from high stresses. Results have implications for the transmission of mechanical signaling in development, wound healing, and fibrosis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据