4.7 Article

Atomistic determination of Peierls barriers of dislocation glide in nickel

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmps.2023.105359

关键词

Peierls barrier; Atomistic modeling; Nudged elastic band method; Face-centered cubic metal

向作者/读者索取更多资源

This study calculates the Peierls barriers for screw and edge dislocation glide in a face-centered cubic (FCC) metal of Ni using the nudged elastic band (NEB) method. The results show a decreasing Peierls barrier with increasing shear stress, and the Peierls stress at which the barrier vanishes. The effects of boundary condition and system size on the barriers are also studied.
The Peierls barrier measures the lattice resistance to dislocation glide in crystalline solids. We use the nudged elastic band (NEB) method to calculate the Peierls barriers for screw and edge dislocation glide in a face-centered cubic (FCC) metal of Ni. The minimum energy paths (MEPs) across single or sequential Peierls barriers are determined under shear loading. The NEB results show the decreasing Peierls barrier with increasing shear stress, giving the Peierls stress at which the Peierls barrier vanishes. The effects of boundary condition and system size on Peierls barriers are studied by comparing strain-and stress-controlled NEB results. Furthermore, the free-end NEB methods are applied to determine MEPs with improved computational efficiency. The NEB results are also used to evaluate the energetic driving force of dislocation glide, which is consistent with that determined from the Peach-Koehler force. The accuracy of the present NEB results based on an empirical interatomic potential is assessed by comparison with a machine-learning potential. This work demonstrates the robust and efficient quantification of Peierls barriers to dislocation glide in an FCC metal, and it lays a solid foundation for the atomistic determination of Peierls barriers in compositionally complex alloys with the FCC structure in future studies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据