4.8 Article

Peculiar Phosphonate Modifications of Velvet Worm Slime Revealed by Advanced Nuclear Magnetic Resonance and Mass Spectrometry

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 145, 期 38, 页码 20749-20754

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c06798

关键词

-

向作者/读者索取更多资源

There are highly specialized biological materials in nature, and the phosphonate modification in velvet worm slime may play an essential functional role, providing biological inspiration for the design of recyclable materials.
Nature is rich with examples of highly specialized biological materials produced by organisms for functions, including defense, hunting, and protection. Along these lines, velvet worms (Onychophora) expel a protein-based slime used for hunting and defense that upon shearing and dehydration forms fibers as stiff as thermoplastics. These fibers can dissolve back into their precursor proteins in water, after which they can be drawn into new fibers, providing biological inspiration to design recyclable materials. Elevated phosphorus content in velvet worm slime was previously observed and putatively ascribed to protein phosphorylation. Here, we show instead that phosphorus is primarily present as phosphonate moieties in the slime of distantly related velvet worm species. Using high-resolution nuclear magnetic resonance (NMR), natural abundance dynamic nuclear polarization (DNP), and mass spectrometry (MS), we demonstrate that 2-aminoethyl phosphonate (2-AEP) is associated with glycans linked to large slime proteins, while transcriptomic analyses confirm the expression of 2-AEP synthesizing enzymes in slime glands. The evolutionary conservation of this rare protein modification suggests an essential functional role of phosphonates in velvet worm slime and should stimulate further study of the function of this unusual chemical modification in nature.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据