4.8 Article

Beyond π-π Stacking: Understanding Inversion Symmetry Breaking in Crystalline Racemates

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 145, 期 30, 页码 16879-16888

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c05380

关键词

-

向作者/读者索取更多资源

The design of noncentrosymmetric (NCS) solid state materials, specifically how to break inversion symmetry between enantiomers, has been a subject of interest for chemists, physicists, and materials scientists. In this study, five new racemic compounds were synthesized and found to crystallize in centrosymmetric (CS) space groups, wherein the formation of an inversion center is attributed to parallel heterochiral π-π stacking interactions between adjacent Cu racemates. This work presents a conceptual framework and practical approach for understanding the absence of inversion symmetry in racemates in all NCS crystal classes.
The design of noncentrosymmetric (NCS) solid state materials,specificallyhow to break inversion symmetry between enantiomers, has intriguedchemists, physicists, and materials scientists for many years. Becausethe chemical complexity of molecular racemic building units is sovaried, targeting these materials is poorly understood. Previously,three isostructural racemic compounds with a formula of [Cu(H2O)(bpy)(2)](2)[MF6](2)& BULL;2H(2)O (bpy = 2,2'=bipyridine; M = Ti, Zr,Hf) were shown to crystallize in the NCS space group Pna2(1), of polar, achiral crystal class mm2. In this work, we synthesized five new racemic compounds with theformula [Cu(H2O)(dmbpy)(2)](2)[MF6](2)& BULL;xH(2)O (dmbpy= 4,4 & PRIME;/5,5 & PRIME;-dimethyl-2,2 & PRIME;-bipyridine; M = Ti,Zr, Hf). Single crystal X-ray diffraction reveals that the five newlysynthesized compounds feature equimolar combinations of & UDelta;- and?-Cu(dmbpy)(2)(H2O)(2+) complexesthat are assembled into packing motifs similar to those found in thereported NCS structure but all crystallize in centrosymmetric (CS)space groups. Seven structural descriptors were created to analyzethe intermolecular interactions on the assembly of Cu racemates inthe CS and NCS structures. The structural analysis reveals that inthe CS structures, the inversion center results from parallel heterochiral & pi;-& pi; stacking interactions between adjacent Cu racematesregardless of cation geometries, hydrogen bonding networks, or interlayerarchitectures, whereas in the NCS structure, nonparallel heterochiral & pi;-& pi; interactions between the adjacent Cu racematespreclude an inversion center. The parallel heterochiral & pi;-& pi;interactions in the CS structures can be rationalized by the restrainedgeometries of the methyl-substituted ligands. This work demonstratesthat the introduction of nonparallel stacking can suppress the formationof an inversion center for an NCS racemate. A conceptual frameworkand practical approach linking the absence of inversion symmetry inracemates is presented for all NCS crystal classes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据