4.8 Article

Dynamic Behavior of Intermediate Adsorbates to Control Activity and Product Selectivity in Heterogeneous Catalysis: Methanol Decomposition on Pt/TiO2(110)

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 145, 期 36, 页码 19953-19960

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jacs.3c06405

关键词

-

向作者/读者索取更多资源

In this study, the dynamic behavior of methoxy intermediate on a Pt/TiO2(110) surface during methanol decomposition has been investigated using STM, TPD, and DFT calculations. The results showed that the methoxy intermediates migrate on the TiO2 support surface to seek and find active Pt sites. This work provides a deeper understanding of the role of intermediate adsorbate migration in controlling the catalytic performance.
Dynamic behavior of intermediate adsorbates, such as diffusion, spillover, and reverse spillover, has a strong influence on the catalytic performance in oxide-supported metal catalysts. However, it is challenging to elucidate how the intermediate adsorbates move on the catalyst surface and find active sites to give the corresponding products. In this study, the effect of the dynamic behavior of methoxy intermediate on methanol decomposition on a Pt/TiO2(110) surface has been clarified by combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and density functional theory (DFT) calculations. The methoxy intermediates were formed by the dissociative adsorption of methanol molecules on Pt nanoparticles at room temperature followed by spillover to the TiO2(110) support surface. TPD results showed that the methoxy intermediates were thermally decomposed at >350 K on the Pt sites to produce CO (dehydrogenation) and CH4 (C-O bond scission). A decrease of the Pt nanoparticle density lowered the activity for the decomposition reaction and increased the selectivity toward CH4, which indicates that the reaction is controlled by diffusion and reverse spillover of the methoxy intermediates. Time-lapse STM imaging and DFT calculations revealed that the methoxy intermediates migrate on the five-fold coordinated Ti (Ti-5c) sites along the [001] or [1 (1) over bar 0] direction with the aid of hydrogen adatoms bonded to the bridging oxygens (O-br) and can move over the entire surface to seek and find active Pt sites. This work offers an in-depth understanding of the important role of intermediate adsorbate migration in the control of the catalytic performance in oxide-supported metal catalysts.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据