4.3 Article

Ultra-short-term forecasting of global horizontal irradiance (GHI) integrating all-sky images and historical sequences

期刊

出版社

AIP Publishing
DOI: 10.1063/5.0163759

关键词

-

向作者/读者索取更多资源

Accurate solar forecasts are crucial for optimal power grid dispatch, but changes in cloud distribution pose a challenge. This study proposes a CNN-LSTM model using ASI and GHI sequences as input to predict the future 10-min GHI values. The model improves accuracy by 18% compared to other models.
Accurate minute solar forecasts play an increasingly crucial role in achieving optimal intra-day power grid dispatch. However, continuous changes in cloud distribution and coverage pose a challenge to solar forecasting. This study presents a convolutional neural network-long short-term memory (CNN-LSTM) model to predict the future 10-min global horizontal irradiance (GHI) integrating all-sky image (ASI) and GHI sequences as input. The CNN is used to extract the sky features from ASI and a fully connected layer is used to extract historical GHI information. The resulting temporary information outputs are then merged and forwarded to the LSTM for forecasting the GHI values for the next 10 min. Compared to CNN solar radiation forecasting models, incorporating GHI into the forecasting process leads to an improvement of 18% in the accuracy of forecasting GHI values for the next 10 min. This improvement can be attributed to the inclusion of historical GHI sequences and regression via LSTM. The historical GHI contains valuable meteorological information such as aerosol optical thickness. In addition, the sensitivity analysis shows that the 1-lagged input length of the GHI and ASI sequence yields the most accurate forecasts. The advantages of CNN-LSTM facilitate power system stability and economic operation. Codes of the CNN-LSTM model in the public domain are available online on the GitHub repository https://github.com/zoey0919/CNN-LSTM-for-GHI-forecasting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据