4.5 Article

An experimentally validated anisotropic visco-hyperelastic constitutive model for knitted fabric-reinforced elastomer composites

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/07316844231198310

关键词

Anisotropic visco-hyperelastic model; elastomer composite; knitted composite; nonlinear deformation; finite element analysis

向作者/读者索取更多资源

A new anisotropic visco-hyperelastic constitutive model has been developed for predicting the time-dependent deformation response of flexible, knitted fabric-reinforced elastomer composites. This model incorporates the architecture of knitted fabrics and the hyper-viscoelastic behavior of elastomers using an invariant-based strain energy density function. The model is implemented in a commercial Finite Element Analysis (FEA) software and can aid in the design of knitting patterns for desired mechanical properties.
A new anisotropic visco-hyperelastic constitutive model has been developed to predict the time-dependent deformation response of flexible, knitted fabric-reinforced elastomer composites. These composites exhibit a time-dependent response due to the viscoelastic behavior of the elastomer, while the anisotropic reinforcement effect is attributed to the knitted fabrics. The proposed modeling approach features an invariant-based strain energy density function that incorporates the architecture of knitted fabrics and the hyper-viscoelastic behavior of elastomers. In this study, the elastomer is considered as a viscous neo-Hookean material, and the knitted fabrics are modeled as cords with negligible stiffness in bending. The proposed material model is implemented in commercial Finite Element Analysis (FEA) software, Abaqus (version 2017), through a user-defined material subroutine, UMAT. This approach enables the determination of the constitutive behavior of the composite based on the constituent elastomer, fiber properties, and fabric architectures. The proposed model is verified through a discrete 3D FEA model, in which the elastomer and fabric reinforcement are modeled explicitly. The approach is further validated through physical testing including uniaxial tension, torsion, and three-point bending. Since the proposed strain energy-based constitutive model can predict the deformation response of knitted fabric-reinforced elastomer composites based on the fabric architecture, it can be employed as an efficient modeling tool to aid the design of knitting pattern for target mechanical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据