4.5 Article

Protein biomarkers for root length and root dry mass on chromosomes 4A and 7A in wheat

期刊

JOURNAL OF PROTEOMICS
卷 291, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jprot.2023.105044

关键词

Asparagine synthetase; Label-free proteomics; qRT-PCR; Signal recognition particle; 34-dihydroxy-2-butanone 4-phosphate; synthase

向作者/读者索取更多资源

Improving the root system of wheat is crucial for enhancing grain yield and climate resilience. This study identified proteins associated with root length and root mass in wheat using label-free quantitative proteomics. The findings revealed potential biomarkers that could be used for improving the root system of wheat.
Improving the wheat (Triticum aestivum L.) root system is important for enhancing grain yield and climate resilience. Total root length (RL) and root dry mass (RM) significantly contribute to water and nutrient acquisition directly impacting grain yield and stress tolerance. This study used label-free quantitative proteomics to identify proteins associated with RL and RM in wheat near-isogenic lines (NILs). NIL pair 6 had 113 and NIL pair 9 had 30 differentially abundant proteins (DAPs). Three of identified DAPs located within the targeted genomic regions (GRs) of NIL pairs 6 (qDT.4A.1) and 9 (QHtscc.ksu-7A), showed consistent gene expressions at the protein and mRNA transcription (qRT-PCR) levels for asparagine synthetase (TraesCS4A02G109900), signal recognition particle 19 kDa protein (TraesCS7A02G333600) and 3,4-dihydroxy-2-butanone 4-phosphate synthase (TraesC-S7A02G415600). This study discovered, for the first time, the involvement of these proteins as candidate bio-markers for increased RL and RM in wheat. However, further functional validation is required to ascertain their practical applicability in wheat root breeding.Significance of the study: Climate change has impacted global demand for wheat (Triticum aestivum L.). Root traits such as total root length (RL) and root dry mass (RM) are crucial for water and nutrient uptake and tolerance to abiotic stresses such as drought, salinity, and nutrient imbalance in wheat. Improving RL and RM could significantly enhance wheat grain yield and climate resilience. However, breeding for these traits has been limited by lack of appropriate root phenotyping methods, advanced genotypes, and the complex nature of the wheat genome. In this study, we used a semi-hydroponic root phenotyping system to collect accurate root data, near-isogenic lines (NILs; isolines with similar genetic backgrounds but contrasting target genomic regions (GRs)) and label-free quantitative proteomics to explore the molecular mechanisms underlying high RL and RM in wheat. We identified differentially abundant proteins (DAPs) and their molecular pathways in NIL pairs 6 (GR: qDT.4A.1) and 9 (GR: QHtscc.ksu-7A), providing a foundation for further molecular investigations. Furthermore, we identified three DAPs within the target GRs of the NIL pairs with differential expression at the transcript level, as confirmed by qRT-PCR analysis which could serve as candidate protein biomarkers for RL and RM improvement.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据