4.5 Article

Structuring thermal transport in pristine graphene with h-BN nanorings

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2023.111414

关键词

Structuring graphene; Thermal conductivity; Molecular dynamics; Green-kubo simulations; Electric field

向作者/读者索取更多资源

Structuring graphene can enhance or alter its electronic, optical, and thermal properties. One approach is to punch holes in graphene to form antidot lattices, which transforms it from a semimetal to a semiconductor. In this study, we grow h-BN nanorings on graphene to reduce thermal conductivity. Through simulations, we find that thinner nanorings lead to significantly reduced thermal conductivities by 76% compared to graphene. Additionally, we discuss how an applied electric field can break crystal symmetry and enable directionally tunable thermal transport, providing exciting possibilities to reduce thermal dissipation and enhance other properties.
Structuring graphene has led to a wealth of opportunities to enhance or at least to alter its electronic, optical and thermal properties. E.g, punching holes in graphene in the form antidot lattices turns the base material from a semimetal into a semiconductor. In here, we aim at leaving graphene pristine, but instead growing h-BN nanorings on top of it with the desire to alleviate heat spread by virtue of a reduced thermal conductivity. By combining empirical molecular dynamics and Green-Kubo simulations, we predict that using thinner nanorings leads to rapidly decaying heat currents and therefore remarkably reduced thermal conductivities by 76% in comparison to graphene. Interestingly, we also argue how an applied electric field breaks the underlying crystal symmetry enabling directionally tunable thermal transport. We foresee exciting possibilities to subdue optical and plasmonic loss channels by reduced thermal dissipation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据