4.5 Article

Rational design of a novel polypyrrole-coated and zirconium-doped lithium vanadium phosphate with outstanding rate performance for lithium-ion storage

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jpcs.2023.111603

关键词

Polypyrrole; Li3V2(PO4)(3); Lithium-ion storage; Zr4+ doping; Rate property

向作者/读者索取更多资源

In this research, a promising strategy of polypyrrole coating and Zr4+ doping was introduced to improve the conductivity of LVP material. The Zr4+-doped and polypyrrole-coated LVZ(x)P@PPy electrode was synthesized by a facile way followed by an in-situ pyrrole polymerization procedure. The as-fabricated electrode exhibited outstanding rate property for lithium energy storage.
The inferior electrical conductivity seriously prevents the application of monoclinic Li3V2(PO4)(3) (LVP) cathode in lithium energy storage. In this research, we introduce a promising strategy of polypyrrole coating and Zr4+ doping to promote the conductivity of LVP material. The Zr4+-doped and polypyrrole-coated LVP (LVZ(x)P@PPy) electrode is synthesized by a facile way followed by an in-situ pyrrole polymerization procedure for the first time. The substitution of Zr4+ in V3+ site can enlarge the lattice volume of LVP, providing a big diffusion channel for Li+ extraction and insertion. Besides, Zr4+ doping can also promote the intrinsic conductivity of LVP, whilst polypyrrole film can greatly promote the apparent conductivity. Therefore, the as-fabricated LVZ(x)P@PPy electrode possesses outstanding rate property for lithium energy storage. Especially, LVZ(5%)P@PPy displays the specific capacities of 131.5 and 115.2 mA h g(-1) at 0.1 and 5C respectively between 3 and 4.3 V. Meanwhile, it shows the high capacity retention of 95.7% over 400 cycles at 10C in the potential range of 3 similar to 4.8 V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据