4.6 Review

Recent Applications of Machine Learning in Molecular Property and Chemical Reaction Outcome Predictions

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.3c04779

关键词

-

向作者/读者索取更多资源

The burgeoning developments in machine learning have found notable applications in chemistry, particularly in the prediction of molecular properties and chemical reactions. This review highlights the recent advancements in ML implementations, ranging from ensemble-based models to graph neural networks. Accurate predictions in molecular property prediction, using methods such as D-MPNN, MolCLR, SMILES-BERT, and MolBERT, offer promising prospects in molecular design and drug discovery. Challenges in dealing with reaction data sets are discussed, alongside an optimistic outlook on the benefits of ML-driven workflows for various chemistry tasks.
Burgeoning developments in machine learning (ML) and its rapidly growing adaptations in chemistry are noteworthy. Motivated by the successful deployments of ML in the realm of molecular property prediction (MPP) and chemical reaction prediction (CRP), herein we highlight some of its most recent applications in predictive chemistry. We present a nonmathematical and concise overview of the progression of ML implementations, ranging from an ensemble-based random forest model to advanced graph neural network algorithms. Similarly, the prospects of various feature engineering and feature learning approaches that work in conjunction with ML models are described. Highly accurate predictions reported in MPP tasks (e.g., lipophilicity, solubility, distribution coefficient), using methods such as D-MPNN, MolCLR, SMILES-BERT, and MolBERT, offer promising avenues in molecular design and drug discovery. Whereas MPP pertains to a given molecule, ML applications in chemical reactions present a different level of challenge, primarily arising from the simultaneous involvement of multiple molecules and their diverse roles in a reaction setting. The reported RMSEs in MPP tasks range from 0.287 to 2.20, while those for yield predictions are well over 4.9 in the lower end, reaching thresholds of >10.0 in several examples. Our Review concludes with a set of persisting challenges in dealing with reaction data sets and an overall optimistic outlook on benefits of ML-driven workflows for various MPP as well as CRP tasks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据