4.6 Article

Investigating the Stacking Interactions Responsible for Driving 3D Self-Association of Tricarb Macrocycles

期刊

JOURNAL OF PHYSICAL CHEMISTRY A
卷 127, 期 39, 页码 8110-8116

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.3c04398

关键词

-

向作者/读者索取更多资源

This study investigates the noncovalent forces involved in the self-assembly of tricarb macrocycles and reveals the major contributing interactions through computational analysis. The results obtained shed light on the stability and construction of 3D structures in tricarb and related compounds.
We have investigated the noncovalent forces that play a crucial role in the three-dimensional (3D) self-association of the tricarb macrocycle (composed of alternating triazoles and carbazoles) to understand the multilayer stacks observed through electron microscopy. To explore this idea quantitatively, we have investigated a stacked dimer model of tricarb, where we consider homochiral as well as heterochiral forms of the dimer. We have computed the rotational potential energy surface of the dimer by conducting an angle-dependent scan between the two macrocycles using different levels of theory including the RI-MP2 ab initio method. We observe that dimers oriented at an angle of 60(degrees) exhibit the highest stability, while a secondary minimum is observed at an angle of 30(degrees). While density functional theory (DFT) describes the behavior of both minima very close to that obtained with RI-MP2, semiempirical and MM models appear to obtain only a shoulder instead of the second minimum. To further understand the underlying interactions responsible for stabilizing the self-assembly of the macrocycles, we employed energy decomposition analysis (EDA) using SAPT0. This quantitative assessment allowed us to identify the major contributing noncovalent interactions, including electrostatic, exchange-repulsion, dispersion, and induction. Finally, we expanded our study to evaluate the accuracy of the MIM (molecules-in-molecules) fragmentation methodology in capturing the crucial pi-stacking interactions. Our benchmarking results using the MIM method accurately replicated the angle-dependent PES results. This shows the efficacy of MIM in predicting the noncovalent interactions responsible for the construction of 3D and other higher-order nanoarchitectures for tricarb and related compounds.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据