4.5 Article

Endoplasmic Reticulum Stress Enhances Mitochondrial Metabolic Activity in Mammalian Adrenals and Gonads

期刊

MOLECULAR AND CELLULAR BIOLOGY
卷 36, 期 24, 页码 3058-3074

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.00411-16

关键词

-

资金

  1. National Institutes of Health [HD057876]
  2. Anderson Cancer Institute, Memorial Health

向作者/读者索取更多资源

The acute response to stress consists of a series of physiological programs to promote survival by generating glucocorticoids and activating stress response genes that increase the synthesis of many chaperone proteins specific to individual organelles. In the endoplasmic reticulum (ER), short-term stress triggers activation of the unfolded protein response (UPR) module that either leads to neutralization of the initial stress or adaptation to it; chronic stress favors cell death. UPR induces expression of the transcription factor, C/EBP homology protein (CHOP), and its deletion protects against the lethal consequences of prolonged UPR. Here, we show that stress-induced CHOP expression coincides with increased metabolic activity. During stress, the ER and mitochondria come close to each other, resulting in the formation of a complex consisting of the mitochondrial translocase, translocase of outer mitochondrial membrane 22 (Tom22), steroidogenic acute regulatory protein (StAR), and 3 beta-hydroxysteroid dehydrogenase type 2 (3 beta HSD2) via its intermembrane space (IMS)-exposed charged unstructured loop region. Stress increased the circulation of phosphates, which elevated pregnenolone synthesis by 2-fold by increasing the stability of 3 beta HSD2 and its association with the mitochondrion-associated ER membrane (MAM) and mitochondrial proteins. In summary, cytoplasmic CHOP plays a central role in coordinating the interaction of MAM proteins with the outer mitochondrial membrane translocase, Tom22, to activate metabolic activity in the IMS by enhanced phosphate circulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据