4.7 Article

Fermented rice bran supplementation attenuates colonic injury through modulating intestinal aryl hydrocarbon receptor and innate lymphoid cells in mice with dextran sodium sulfate-induced acute colitis

期刊

JOURNAL OF NUTRITIONAL BIOCHEMISTRY
卷 123, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jnutbio.2023.109493

关键词

barrier integrity; inflammatory cytokine; interleukin-22; intestinal permeability; microbiota dysbiosis.

向作者/读者索取更多资源

This study investigated the effects of fermented rice bran (FRB) on modulating intestinal aryl hydrocarbon receptor (AhR) expression, innate lymphoid cell (ILC)3 populations, the fecal microbiota distribution, and their associations with dextran sodium sulfate (DSS)-induced acute colitis. The results showed that FRB supplementation can improve gut health, alleviate colitis symptoms, and have anti-colitis effects by enhancing ILC3 and AhR functions.
This study investigated the effects of fermented rice bran (FRB) on modulating intestinal aryl hydrocarbon receptor (AhR) expression, innate lymphoid cell (ILC)3 populations, the fecal microbiota distribution, and their associations with dextran sodium sulfate (DSS)-induced acute colitis. C57BL/6 mice were assigned to four groups: 1) NC group, normal mice fed the AIN-93M diet; 2) FRB group, normal mice fed a diet supplemented with 5% FRB; 3) NCD group, DSS-treated mice fed AIN-93M; 4) FRBD group, DSS-treated mice fed a 5% FRB-supplemented diet. DSS was administered for 5 d and followed by 5 d for recovery. At the end of the experiment, mice were sacrificed. Their blood and intestinal tissues were collected. Results showed that there were no differences in colonic biological parameters and function between the NC and FRB groups. Similar fecal microbiota diversity was noted between these two groups. Compared to the non-DSS-treated groups, DSS administration led to increased intestinal permeability, enhanced inflammatory cytokine production and disease severity, whereas tight junctions and AhR, interleukin (IL)-22 expressions were downregulated, and the ILC3 population had decreased. Also, gut microbiota diversity differs from the non-DSS-treated groups and more detrimental bacterial populations exist when compared to the FRBD group. FRB supplementation in DSS-treated mice attenuated fecal microbial dysbiosis, decreased intestinal permeability, improved the barrier integrity, upregulated AhR and IL-22 expression, maintained the ILC3 population, and pathologically mitigated colonic injury. These findings suggest enhanced ILC3-and AhR-mediated functions may be partly responsible for the anti-colitis effects of FRB supplementation in DSS-induced colitis.(c) 2023 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据