4.7 Article

Evaluating the detection potential of C59X fullerenes (X = C, Si, Ge, B, Al, Ga, N, P, and As) for H2SiCl2 molecule

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 387, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2023.122621

关键词

Adsorption; DFT; Dichlorosilane; Fullerene; Nanocage

向作者/读者索取更多资源

In this investigation, C59X nanocages (where X represents C, Si, Ge, B, Al, Ga, N, P, and As) were successfully employed as adsorbents for detecting DCS gas. The use of advanced density functional theory (DFT) methods, along with NBO bond order analysis, confirmed the remarkable interaction capabilities of C59Al and C59Ga nanocages with the gas. Comprehensive studies using QTAIM and NCI techniques further substantiated the preferential adsorption exhibited by C59Al and C59Ga nanocages in relation to DCS gas, providing unprecedented insights into the underlying intermolecular forces involved.
Within the framework of this investigation, an array of fullerene-like nanocages, denoted as C59X (where X represents C, Si, Ge, B, Al, Ga, N, P, and As), has been deftly employed as adsorbent for the purpose of detecting H2SiCl2 (DCS) gas. The detection mechanism utilized a state-of-the-art density functional theory (DFT) method, integrating four advanced functionals (PBE0, & omega;B97XD, M06-2X, and B3LYP-D3), in conjunction with 6-311G(d) basis set. The discerning outcomes derived from the rigorous NBO (Natural bond orbital) bond order analysis, specifically focusing on the intricacies of the Wiberg bond index (WBI), served as compelling validation, unequivocally affirming the remarkable interaction capabilities harbored by C59Al and C59Ga nanocages with the gas. Notably, the adsorption energy values recorded for C59Al and C59Ga fullerene-like nanocages were strikingly amplified, serving as further testimony to their exceptional potential as nanosorbents. It is essential to underscore the comprehensive investigations conducted, employing QTAIM (Quantum Theory of Atoms in Molecules) and NCI (Non-covalent Interactions) techniques, as they played an integral role in corroborating and further substantiating the preferential adsorption exhibited by C59Al and C59Ga nanocages in relation to DCS gas. The indepth analyses facilitated by these advanced techniques have provided unprecedented insights into the complex interplay of intermolecular forces, notably robust van der Waals forces, underlying the non-covalent interactions involved in the adsorption process. In light of the multifaceted findings, it is unequivocally established that C59Al and C59Ga nanocages exhibit exceptional properties as nanosorbents, thereby rendering them supremely suited for the deployment as adsorbent in the precise and efficient detection of the elusive DCS gas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据